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Abstract: 

The main contribution of this paper is the 
Cancelback Protocol, an extension of the 
Time Warp mechanism that handles stor- 
age management. It includes both fossil 
collection, the recovery of storage for mes- 
sages and states that can never again influ- 
ence the computation, and cancelback, the 
recovery of storage assigned to messages 
and states at times so far in the future that 
their memory would be better used for 
more immediate purposes. It guarantees 
that Time Warp is optimal in its storage re- 
quirements when run in shared memory, 
i.e. Time Warp will successfully complete a 
simulation using no more space than it 
would take to execute the same simulation 
with the sequential event list algorithm. 
This is better by a factor of two than the 
only previously published result. Without 
this protocol (or equivalent) Time Warp’s 
behavior can be unstable; hence it should 
be considered an essential part of Time 
Warp mechanism, rather than simply a re- 
finement. 

In addition we also prove that asynchron- 
ous conservative algorithms, including all 
of the Chandy-Misra-Bryant (CMB) mecha- 
nisms, are not optimal; they cannot neces- 
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sarily execute a simulation in the same 
amount of space as a sequential execution. 
In some cases a simulation requiring space 
n+k when executed sequentially might re- 
quire O(nk) space when executed on n pro- 
cessors by CMB. 

1. Introduction 

An optimistic simulation mechanism is 
one that takes risks by performing specula- 
tive computation which, if subsequently 
determined to be correct, saves time, but 
which if incorrect, must be rolled back. In 
contrast, a conservative mechanism is one 
that never indulges in speculative compu- 
tation and hence never has to roll back. 
An asynchronous conservative mecha- 
nism is a conservative method in which 
subsimulations that do not interact can be 
independently scheduled, with no upper 
bound on the difference in virtual time be- 
tween the farthest ahead and farthest be- 
hind parts of the simulation. The Chandy- 
Misra-Bryant methods [Misra 861 are the 
best-known asynchronous conservative 
methods today; TW is the best-known opti- 
mistic method. 

By now a great deal is known about the 
real time performance of the Time Warp 
(TW) [Jefferson 841 and CMB mechanisms, 
both empirical, e.g. [Berry 851, [Chandy 791, 
[Fujimoto 881, [Fujimoto 891, [Fujimoto 901, 
[Hontalas 89a], [Hontalas 89b], [Jefferson 871, 
[Lakshmi 871, [Leung 893, [Lomow 883, 
[Lubachevsky 891, [Presley 891, [Reed 881, 
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[Reiher 893, [Reiher 90a], [Su 891, [West 881, 
[Wieland 891, and analytical, e.g. [Laven- 
berg 831, [Jefferson 841, [Mitra 841, [Lin 89a], 
[Lin 89b], [Lin 90a], [Lin 90b], [and Lipton 
901. However very little is known about 
their space performance. In this paper we 
study the memory requirements for both 
optimistic and conservative methods of 
parallel discrete event simulation. 

We say that a simulation mechanism X ap- 
plied to simulation s requires an amount 
of memory mc,s if, all possible executions 
of s under Z correctly complete, but in any 
amount of memory less than mc,s there is 
at least one possible execution that runs 
out of memory. In m c,s we count all 
memory used to hold the state of the simu- 
lation, and also that used to hold the event 
notices or event messages. However, we 
do not count the constant amount of 
memory per processor needed for certain 
global purposes, e.g. deadlock detection and 
resolution in some CMB protocols, or GVT 
calculation and distribution in TW. 

If Q is the standard sequential event list 
mechanism then the minimal amount of 
memory in which a simulation s can be 
executed is mQ,s. In this paper we show 
that for any simulation s and any amount 
of memory greater than or equal to mQ,s, 
TW with the Cancelback Protocol can al- 
ways execute s to completion. In contrast, 
we will give a family of examples to prove 
that the Chandy-Misra-Bryant (CMB) sim- 
ulation mechanisms can be very poor in - 
their storage requirements. It is important 
to realize that neither TW nor any other 
parallel simulation mechanism can opti- 
mize both space performance and time per- 
f ormance simultanedusly. To achieve 
.speedup from parallelism using TW it is 
still typically necessary to have several 
times the minimal amount of memory. 

Optimistic methods have completely dif- 
ferent storage management problems and 
opportunities from conservative methods. 
The results in this paper suggest that the 
presence of rollback as a synchronization 
tool allows much greater flexibility in the 
management of buffers in asynchronous 
distributed systems than is possible with 
conservative methods. 

The Cancelback Protocol has been imple- 
mented in its entirety at Jade Simulations 
[Lomow 881, and partially at the JPL in the 
Time Warp Operating System [Jefferson 
871. No empirical performance studies 
have been published, however. 

2. Asynchronous conservative methods 
are not space-optimal 

In their seminal paper [Chandy $11 the au- 
thors claimed without proof (in the ab- 
stract) that their parallel execution mecha- 
nism needs no more memory to complete 
a simulation using the CMB algorithms 
than the standard sequential event list al- 
gorithm requires. In this section we prove 
that this is not so. It suffices to give a sin- 
gle example simulation class for which this 
bound cannot be met. This proof applies 
only to asynchronous conservative meth- 
ods. Synchronous methods [Lubachevsky 
891 that guarantee that all parts of the sim- 
ulation remain at roughly equal virtual 
times are not covered. 

Consider the simulation R illustrated in 
Fig. 1, with the pattern of event scheduling 
shown in Fig. 2. Each vertical line repre- 
sents virtual time for one of the four pro- 
cesses, while the non-vertical arcs repre- 
sent event scheduling (messages). Process 
A schedules events ml through m4 for B at 
low virtual times less than f2, while C 
schedules m5 through m8 for D at high vir- 
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Fig. 1: Communication topology for exam- 
ple CMB simulation R 

tual times greater than t2. In addition, A 
and C each schedule three events for 
themselves to indicate when to wake up 
and schedule other events, though these 
will play no significant role in our analysis. 

We now analyze the amount of storage 
necessary to execute this simulation se- 
quentially. We need only count the mem- 
ory needed for event notices (correspond- 
ing to message buffers in parallel execu- 
tion), since CMB simulations always take 
the same amount of state space as is re- 
quired sequentially. Notice that event n14 
is scheduled at a later virtual time than ml 
through m3, but it must be processed at an 
earlier virtual time; m4 thus preempts 
messages m 1-m3. In CMB it is not possible 
for preempting event messages to be trans- 
mitted on the same channel as the pre- 
empted messages because each channel is 
presumed to be FIFO. But it is possible if 
the preempting message, rnqr travels on a 
separate channel. 

To determine the sequential storage re- 
quirement fnQR we observe that at virtual 
time tl when m 4 is processed by 5 there 
must be memory for 4 event notices to 
hold m 1-m4. Since there must also be one 
to hold mo, we conclude that this simula- 
tion needs 5 event notice buffers to execute 

A B c 

m6 

m5 
m8 

D 

Fig. 2: Event relationships in simulation FL 
The vertical axes are virtual time. rq)‘mg 
are event messages. 

up to time t2. Similar arguments show 
that C and D need 4 message buffers at 
time fd, but by that time all of the storage 
involving A and B has been released. 
Hence 5 event notices are necessary and 
sufficient for sequential execution of the 
simulation in Fig. 2. 

Consider now what happens if the simula- 
tion is executed in parallel by any of the 
CMB mechanisms. After event message 
mg has been sent the two subsimulations 
A-5 and C-D are disjoint and will execute 
independently in parallel. This improves 
the simulation’s time performance, but it 
raises its space requirement. Suppose the 
scheduling is such that the C-D subsystem 
executes to time f3, just before sending mg. 
At time f3 there are 3 messages buffered, 
m5-m7. Message m. and the 3 messages C 
sent to itself have all been deleted, and m& 
has not yet been generated. Meanwhile, 
suppose the A-8 subsystem executes to vir- 
tual time to, At this point process A has 
sent 2 event messages to 5, m 1 and m2, 
which we can presume are buffered at 5, 
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and it is about to send m3, as well as a mes- 
sage to itself. There are no messages buf- 
fered at either A or C. 

With A-B at time to and C-D at time t, a 
total of 5 event message buffers are in use. 
But for either subsystem to make any fur- 

ther progress, more buffers are needed. A 
needs to send m3 which must be buffered 
at 5, and C needs to send “8 which must 
be buffered at D. Although the simulation 
can execute sequentially with 5 buffers, if 
its scheduling starts out this way under 
CMB, it cannot complete with 5 buffers. 
The simulation is deadlocked, but not in 
the classical kind of CMB deadlock that 
arises from cycles in the communication 
graph. It is a resource deadlock that is un- 
breakable. From this example we can thus 
conclude that: 

The CMB mechanisms are not guaran- 
teed to complete in the sume amount of 
storage as the corresponding sequent ial 
execution. 

This result does not depend on the as- 
signment of processes or distribution of 
memory among the processors, nor on 
whether memory is shared or distributed. 
Unless additional synchronization con- 
straints are imposed it is always possible 
that this simulation will fail to complete 
when given only the amount of memory 
needed for sequential execution. We can 
formalize with the following result (simi- 
lar to a result proved in [Lin 89~1). 

Thm. 1: There exists a simulation S such 
that 

a> S is composed of n pairs of processes; 
b) each pair needs k buffers; 
d S can execute in O(n+k) buffers when 

executed sequentially; 
d) but S requires O(nk) buffers to guaran- 
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tee completion when executed by any 
CMB mechanism. 

Proof sketch: Take a two-process simula- 
tion such as R in Fig. 2 in which one mes- 
sage preempts k-7 others; a pair then re- 
quire k buffers to complete. Construct 
simulation S as in Fig. 3 from n “copies” of 
R, but modified so that (a) all of the n com- 
ponents use disjoint regions of virtual 
time, and (b) an initial message is sent to 
each component to start it. Simulation S, 
with 2n processes, can execute sequentially 
using n+k- 7 event notice buffers, but re- 
quires n(k-l)+l buffers to guarantee com- 
pletion. End proof. 

virtual time 

r s2 

sn 

Fig. 3: Simulation S constructed by joining 
II “copies” of subsimulation S) Each si exe- 
cutes in a different region of virtual time. 

3. The problem of flow control in TW 

Most descriptions of TW rely on fossil col- 
lection as the only storage management 
mechanism. Unfortunately fossil collec- 
tion alone (so named because it recovers 
memory whose contents are so old that 
they cannot have any future effect on the 
computation) is not sufficient for stable 
memory management in TW. Some add- 



itional mechanism is necessary for “storage 
management of the future” (which in- 
cludes “flow control”). There are many 
flow control protocols in the literature 
[Chu 791, but unfortunately, none of the 
known protocols can be applied success- 
fully to TW; instead the entire problem of 
flow control must be rethought from first 
principles because many issues arise in op- 
timistic systems that have no analog else- 
where. Among the differences are these: 

(1) Conventional systems communica- 
tion are usually organized into unidirec- 
tional, order-preserving channels, each 
with separate queueing, so that flow con- 
trol can be done separately on each chan- 
nel. But in TW there is no notion of a 
“channel”; any process can send a message 
to any other at any time. Nor can we view 
this as implicitly specifying a complete 
communication graph because the costs in 
that case would grow quadratically with 
the number of processes. 

(2) In conservative systems, once a message 
has been read by the receiver it can be 
deleted. But in TW a message that has 
been read must still be saved for a while in 
case the receiver rolls back and needs to re- 
process it. 

(3) In conventional systems message trans- 
mission is order-preserving along each 
channel. But under T”W messages are not 
processed in the order of sending; they 
must be processed strictly in order of rvt, 
regardless of the real time order in which 
they arrived or were sent. 

We illustrate a flow control problem for 
TW in Fig. 4. A message m arrives at pro- 
cess A, but there is sufficient buffer space 
for only 3 messages and all 3 slots are al- 
ready filled. We assume, however, that 
there is always one “temporary” buffer that 

can hold m momentarily so that its header 
can be inspected. m has an rvt of 48, which 
is less than that of any message already en- 
queued. We shall further assume that all 
four messages are “correct”, i.e. none of 
them will be cancelled later by antimes- 
sages, and thus no buffer space will ever be 
released by ordinary cancellation. None of 
the messages has yet been processed by the 
receiver. How should TW handle this ar- 
riving message? 

One thought is that flow control is already 
too late because message m should not 
have been generated; its sender, 5, should 
have been blocked by the operating system 
and prevented from sending. But that is 
an unsatisfactory answer. In this example: 
message m carries an rvt less than those on 
the messages already enqueued, so m 
should be processed before them. Perhaps 
one of their senders should have been 
blocked earlier still, but that argument fails 
because no protocol could have anticipated 
the pattern of timestamps on arriving mes- 
sages. 

full 

sender B 

receiver 

send time 

receive time 

~@iEJJ 

m m’ m” m”’ A 
Fig. 4: Message m with rvt=48 arrives at A, 
whose three buffers are already full. 
GVT<=48. 

We also cannot use a protocol in which the 
sender waits for an ACK or a timeout, al- 
lowing A to simply NACK message m, ex- 
pecting 5 to resend it later when space be- 
comes available. If m had the highest rvt of 
the four messages that would be appropri- 
ate, but in this example, unless some ac- 
tion is taken space will never become 
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available. We might hope, for example, 
that A will process some of the messages in 
its queue and free space for the arriving 
message. But although A may indeed pro- 
cess them optimistically, none of them can 
be fossil-collected because their rvt’s are all 
greater than 48, while GVT remains less 
than or equal to 48 until after m is pro- 
cessed. 

The Cancelback Protocol makes room for 
the arriving message by removing one of 
those already enqueued. It chooses mes- 
sage m”’ and refurns it to E, making room 
for m. It preempts the storage holding 
message m “’ and allocates it to m because m 
has a lower rvt. m”’ travels backward in 
virtual time, and enters the output queue 
of E, where it annihilates with the 
negative copy saved there. 

This protocol has the effect of slowing 
down senders with respect to receivers, 
although not by blocking them. Instead, it 
causes them to roll back and re-execute. If 
E has reached a virtual time greater than 
51 at the moment of cancelback, it rolls 
back to time 51 and then executes forward 
again, regenerating m”‘. If there is still not 
enough room at A when m”’ arrives the 
second time it may again be sent back, pos- 
sibly causing a second rollback. Alterna- 
tively, a different message may be chosen 
for cancelback the second time. When E 
eventually crosses virtual time 51 in the 
forward direction it will regenerate the 
message and resend it. 

The message chosen for cancelback need 
not come from the same sender as the ar- 
riving message. It is not even necessary for 
it to be in the input queue of the same pro- 
cess as the arriving message. In general, 
the arrival at some process Q of a message 
from process P might cause a message in 
the input queue of a third process V and to 

be sent back to a fourfh process U. In con- 
ventional ffow control protocols there is 
no analog of this behavior. We should 
bear in mind, of course, that flow control is 
only part of the full storage management 
problem in TW. In the full Cancelback 
Protocol an output message or a state 
might be chosen for cancellation instead of 
an input message. 

There is one final worry that one might 
have about this Cancelback Protocol. A re- 
verse message may cause the sender to roll 
back, re-execute, and then resend, only to 
find that there is still not enough buffer 
space, and the sender must roll back, re-ex- 
ecute, and resend again. Although this cy- 
cle is not infinite, it can repeat any finite 
number of times, and is wasteful. It is defi- 
nitely desirable to attenuate the “busy 
cancelback” aspect of flow control if possi- 
ble. We consider this issue to be part of a 
larger load management issue in TW, but 
further discussion of such issues is beyond 
the scope of this paper. 

4. The Cancelback Protocol and the full 
storage management problem in TW 

Besides input messages there are two other 
kinds of dynamic memory allocated by 
TW: output messages and states. Both con- 
tribute to memory management problems 
and must be unified with flow control be- 
fore we have a complete memory manage- 
ment strategy. The full Cancelback Proto- 
col is similar to one proposed in [Gafni 851. 
The main differences are that (a) ours is 
cast in a form that makes some use of 
shared memory so that the protocol is 
simpler, and (b) ours allows a simulation 
to complete in half the memory of hers. 

Whenever a message is sent by a process 
two complementary copies are created, the 
positive copy transmitted to the receiver, 
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and the negative copy saved in the sender’s 
output queue. Messages in the sender’s 
output queue can fill memory just as 
surely as messages in a receiver’s input 
queue can. This problem is thus exactly 
symmetrical to the usual flow control 
problem, but it has no analog in conserva- 
tive communication protocols. Likewise, 
saved process states compete for the same 
dynamic memory as messages. If processes 
execute too far forward in virtual time the 
system may run out of memory because 
there are too many saved states. 

In the Cancelback Protocol messages and 
states are treated symmetrically. A state is 
like a message-to-self, whose svt is the vir- 
tual time it is oz.4 tput from an event (i.e. 
produced), and whose rvt is the virtua1 
time it is input to the next event (i.e. used). 
The major difference between messages 
and states is that since a state is always 
“sent” from a process to itself, TW does not 
explicitly represent both a negative and a 
positive copy. 

Before presenting the Cancelback Protocol 
we must explain the unusual assumptions 
we make to strengthen and simplify our 
results: 

Al. Shared-memory architecture: We as- 
sume TW is running in shared-mem- 
ory. 

A2. Ideal delivery: Messages are delivered 
instantly, reliably, and atomically. 

A3. Instantaneous GVT: The true instant- 
aneous value of GVT is always available 
as a variable in shared memory. 

These assumptions are very powerful and 
need justification. We assume Al for two 
reasons. First, fragmentation caused by 
memory being partitioned across the nodes 

of a distributed architecture would make it 
very clumsy to actually achieve true stor- 
age optimality. Secondly, shared memory 
allows us to think of messages as instantly 
delivered in zero real time (AZ), and as a 
result, the instantaneous GVT value is al- 
ways available (A3), since every event 
completion and every message arrival can 
update GVT atomically. 

Although we cast the protocol in shared- 
memory form, we believe that the results 
extend to distributed architectures because 
we are concerned here with optimizing 
space instead of time. For these results to 
apply to a distributed architecture we need 
to allow the possibility of splitting queues 
across nodes, and we must permit the 
shared memory aspects of the Cancelback 
Protocol to be emulated in distributed 
memory with only constant memory over- 
head per processor. With sufficient time 
this is in fact possible, e.g. by assuming that 
the entire computation is conducted in 
shared virtual memory. Such possibilities 
are generally impractical with current tech- 
nology, and it is thus more accurate to say 
that the Cancelback Protocol, when trans- 
lated into a fully distributed form, is only 
approximately optimal in its memory re- 
quirements. 

A4. No dynamic creation or destruction: 
Processes are neither created nor de- 
stroyed at run time. 

A4 could be relaxed, but it would require 
us to consider process creation and destruc- 
tion as storage allocation and deallocation 
operations. 

A5. Global memory allocation: Memory 
for all queues of all processes is allo- 
cated from a single common pool. 

A5 is a natural assumption, so that frag- 
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mentation issues can be ignored, and so 
that the protocol to satisfy the needs of one 
process by taking it memory away from 
another. 

A6. All messages and states have fhe same 
length. 

We assume memory is measured in units 
of “pages”, each of the length to hold exact- 
ly one message or process state. A6 avoids 
dealing explicitly with growing and shrink- 
ing states and with memory fragmentation 
issues. 

A7. Sfate-save after every event: TW 
saves the fur2 state of a process after ev- 
ery event. 

Although TW can get away with saving 
process states (or state deltas) less often, do- 
ing so reduces the amount of storage need- 
ed for state queues, thereby weakening our 
result. 

A8. Nonzero virtual time delays: For 
each event message m we assume m.svt 
-=z m.rvt. 

A9. No multiple-message events: No two 
event messages arrive at the same re- 
ceiving process with the same rvt (or 
else all but at most one of them is an- 
nihilated). 

A8-A9 prevent any possibility of a causal 
cycle that takes zero virtual time, and 
avoid certain religious controversies over 
the tie-breaking semantics of multi-mes- 
sage events. 

The Cancelback Protocol must be described 
at two levels: the global level and the pro- 
cess level. At the global level the only 
quantities of interest are f ree-mem, the 
amount of available memory in pages, and 

global virtual time (GVT). GVT plays a fun- 
damental theoretical role in all commit- 
ment issues. It was originally defined in 
[Jefferson 821 and [Jefferson 841, but here we 
can simplify the definition because we 
assume instantaneous message transmis- 
sion so that no messages are ever “in tran- 
sit” when GVT is queried. 

Definition: At any instant of real time GVT 
is defined to be the minimum of the 
local virtual times (Ivt’s) of all processes. 

The most important properties of GVT are 
well established for TW without the Can- 
celback Protocol, and also apply to TW 
with it: 

(a) No message sent in the forward direc- 
tion ever carries an rvt time stamp 
strictly less than GVT, and no message 
sent in the reverse direction ever car- 
ries an svt timestamp strictly less than 
GVT. 

(b) No rollback ever occurs to a time ear- 
lier than GVT. 

(c) GVT never decreases. 

For any process p located on n the follow- 
ing invariant hold at all instants of real 
time: 

GVT <= p.lvt 4.1 

For any message u transmitted in the 
either the forward or reverse direction 

GVT <= u.svt < u.rvt 4.2 

holds at the moment of transmission. 

The TW system must have at least two ex- 
ecution priority levels. The lowest level, 
Level 0, is the priority for user processes. 
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Level 1 is the priority at which interrupt or 
trap routines run for handling message ar- 
rivals, state saving, and GVT calculation. 
The Cancelback Protocol itself is invoked at 
Level 1 by interrupt or trap at any of the 
three times when dynamic storage is allo- 
cated: the arrival of a message in the for- 
ward direction, the arrival of a message in 
the reverse direction, and the time of a 
state save. 

A TW process is considered to have four 
parts (in addition to its code): 

h/t: local virtual time 
input: input msg queue (ordered by rvt) 
output: output msg queue (ordered by svt) 
state: state queue (ordered by rvt or svt) 

An item (message or state) has these fields: 

SVt send vt 
sndr sender 
rvt receive vt 
rcvr receiver 
queue dest. queue 

(real) 
(process name) 
(real) 
(process name) 
(“inpuf”, “state”, 

or “output”) 
sign sign of message (+ or -) 
text of msg or state (any type) 

The same representation is used for both 
states and messages so that a uniform pro- 
tocol can handle both. One item is pre- 
sumed to take one “page” of memory. The 
syntax used is such that u .svt is the send 
virtual time of item u. We also use a 
“macro” to collapse the code along its 
of symmetry and avoid repetitious 
analysis: 

vt(u) = case u.queue of 
output: us/t; 
state: u.rvt; 
input: u.rvt 

endcase 

lines 
case 

The full Cancelback Protocol is shown in 
Fig. 5. It is in the form of routine a r - 
rive(u,p) that controls what happens in TW 
when a message or state u “arrives” at a 
process p and to be stored. For a state, 
“arriving” means that it has to be saved. 

In Line 4 the routine delete(v) is called, 
which deletes one item, recovering one 
page of memory. In Line 5 the routine 
cancel(v) is called. In the case of a state this 
means the same as delete(v), but in the case 
of a message it means dequeue the message 
and send it (a) forward if it came from the 
output queue, or (b) backward if it came 
from the input queue. Because it is called 
within an atomic conditional, we are guar- 
anteed that both the sender and receiver of 
a message cannot both concurrently decide 
to cancel their respective copies. One will 
decide to cancel first, then both copies will 
annihilate atomically. 

We now describe the protocol line by line: 

Line 0: When an item arrives it is placed in 
the operating system’s internal buffer, and 
free-mem is decremented. This cannot fail 
because we presume that the operating sys- 
tem has reserved enough memory to buf- 
fer one item (state or message). Hence we 
can assert that free-mem >= 0 before Line 0, 
and that free-mem >= -1 afterward. The re- 
mainder is devoted to guaranteeing that 
free-m em >= 0 again when we leave. 

Line 1: Line 1 means “the ivt of process p is 
min’d with vt( u)“. When macro vt is ex- 
panded, it encodes three cases. Depending 
upon whether the arriving item u is a 
reverse message, a state, or a forward mes- 
sage, the Ivt of p is min’d with either the svt 
of the item or its rvt. (Note, however, that 
since an “arriving” state has an rvt equal to 
Ivt, this line is always a no-op for states 
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procedure arrive(u, p): 
( f ree-mem = free-mem -1; ! New arrival takes one page of memory 

p.lvt = p.lvt min id(u); ! Performs rollback or no-op 
insert(p,u); ! Enq arriving item; may cause annihilation (2) 
if free-mem < 0 

then [;I 
atomic-if 31: vt(v) c GVT (4) 

then ! Fossil collection; delete one state or msg (4) 
delete(v); 

else 1;; 
atomic-if 3: v.svt >= GVT (5) 

then ! Cancel item in forward OY backward direction (5) 
cancel(v) (5) 

else fail(“Out of memory”) (6) 
endif 

endif 
endif 

1; 
procedure insert(p,u): 

( TW-enqueue(p.u.queue, u); 
if annihilation occurred during enqueueing 

then free-mem = free-mem + 2 
1; 

procedure delete (p,u): 
( TW-dequeue-and-discard(p.u.queue, u); 

free-mem = free-mem + 1 
1; 

procedure cancel (u): 
( p = location(u); 

case uqueue bf 
output:: ( TW-dequeue(p.output, u); 

p.lvt = p.lvt min u.svt; ! possible rollback to u.svt 
arrive(u, u.rcvr) ! will cause annihilation 

1; 
state: ( Fti-dequeue-and-discard(p.state, u); 

. = p.lvt min u.svt; ! possible rollback to u.svt 
free-mem = free-mem + 1 

1; 
input: ( TW-dequeue(p.input, u); 

p.lvt = p.lvt min u.rvt; ! possible rollback to u.rvt 
arrive(u, u.sndr) ! will cause annihilation 

1 
endcase 

1; 

Fig. 5: The Cancelback Protocol 
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being saved.) Upon return from the proto- 
col, execution will proceed at the new val- 
ue of ‘Ivt. A rollback occurs whenever the 
min operation causes Ivt to decrease. 

Line 2: The arriving item u is enqueued in 
the appropriate queue (input, output, or 
state) of process p. The enqueueing opera- 
tor is TW-style, which means sorted in 
order by vt and with annihilation if a mes- 
sage encounters its own antimessage. 
When the enqueueing results in annihila- 
tion, free-mem is incremented by 2. 

Line 3: This is the beginning of code in- 
tended to ensure that free-mem >= 0 upon 
exit. In most cases Lines 4-4 will not exe- 
cute at all, since there will be available 
space. Notice that if Line 2 results in an 
annihilation, then the test here always 
fails. It is a general property of the Can- 
celback Protocol that a message that annih- 
ilates and releases space is a2zuuys accepted. 

Line 4: This code that performs fossil col- 
lection, i.e. the deletion of an old message 
or state that cannot affect the future course 
of the computation. An important nota- 
tion used in Lines 4 and 5 is an atomic con- 
ditional with existential quantification and 
variable binding. Code of the form 

atomic-if 3v: P(v) then S(v) 

means “if there is at least one item (input 
message, output message, or state) that is 
in enqueued at some process and that satis- 
fies predicate P, then bind one such item to 
variable v (chosen nondeterministically) 
and perform action S(v); if there is no such 
item v, then do the else clause”. This must 
be done atomically, but the else clause as- 
sociated with the conditional is not part of 
the same atomic action.The scope of bind- 
ing to variable v is limited to P(v) and S(v). 

Again macro M(v) really encodes three sep- 
arate conditions: any input message Vi such 
that vi.rvt < GVT, or a state vs such that 
v,.rvt < GVT, or an output message ve such 
that v,.svt < GVT, can be deleted, recover- 
ing one page of memory. 

There is an asymmetry inherent in Line 4. 
A message Vi in the input queue can only 
be deleted when vi.rvt < GVT, which is 
more restrictive than the condition for 
output messages, which can be deleted 
when v,.svt < GVT. Hence, the situation 
can arise that v.svt c GVT C= v.rvt. Because 
svt < GVT, the sender will never have to 
roll back and resend the message, and its 
copy can be deleted. But because rvt 
>= GVT, the receiver may yet have to pro- 
cess the message, or roll back and reprocess 
it. Thus, although message-antimessage 
pairs are created at the same moment in 
virtual time, they are not necessarily de- 
stroyed at the same moment. 

Line 5: This is the “cancelback” line that 
performs “flow control” and all other stor- 
age recovery operations not associated with 
commitment. It attempts to cancel a mes- 
sage or state stored for some future virtual 
time in order to make some room now, at 
virtual time GVT. If there is any item v in 
any process, whose vt is greater than GVT, 
then it can be cancelled and re-produced 
later. Notice that v does not have to be 
from either the sender of u, or the receiver; 
on the other hand, v can in fact be u. 

To describe how cancelback works we con- 
sider three cases separately: v is an input 
message, an output message, or a state. If v 
is an input message, then Line 5 is exactly 
the protocol discussed in Section 3. Mes- 
sage v is cancelled, which in the case of an 
input message means that it is removed 
from this input queue and sent in the re- 
verse direction back to its original sender’s 
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output queue, where it will invoke this 
same protocol, probably causing a rollback 
and definitely causing an annihilation. 
Since only messages v with GVT <= v.svt 
are chosen, it cannot carry an svt less than 
GVT, and thus it will never cause a rollback 
to a time lower than GVT. 

If v is an output message, then it is can- 
celled in the forward direction, i.e. it is re- 
moved from the output queue, and trans- 
mitted toward the receiver where it will 
annihilate with its antimessage and possi- 
bly cause a rollback. Again, only messages 
with GVT < = v.svt are chosen, and since 
from Eqn, 4.2 we know that 

GVT c= v.svt < v.rvt 

no message will be transmitted in the for- 
ward direction with v.rvt <= GVT. Hence, 
no message cancelled by this Line can cause 
a rollback to a time earlier than GVT. 

Finally, if the item v chosen is a state, then 
its svt is the virtual time it was created. 
“Cancelling” a state means deleting it and 
rolling back to time svt, just as though an 
“antistate” were sent back from the object 
to itself to annihilate with the state. Some 
states may be future states, i.e. their svt is 
greater than the Ivt of the process to which 
they belong. If so, such a state must be the 
product of the lazy reevaluation technique 
(also known as jump forward) [West 881. 
In any case, since GVT c= v.svt, the 
rollback does not conflict with GVT. 

The message or state v chosen for cancel- 
back may very well be U, the one that just 
arrived and was enqueued in Line 2. The 
protocol then has the effect of “rejecting” u. 
As written, this Line makes a nondeter- 
ministic choice among all of the items v 
such that v.svt >= GVT. From a memory 
point of view this choice does not matter, 

but from a time point of view it probably 
does. 

Line 6: When we get here the protocol has 
failed; the only recourse is to to terminate. 

5. Analysis of the Cancelback Protocol 

We now show that TW can make progress 
in the minimal amount of memory. 

Thm. 2: Let a simulation S be decomposed 
into processes pi, i=l ..n. Assume the entire 
multiprocessor has total of M shared mem- 
ory pages available, and that pi(t) is the 
amount of memory needed by process pi at 
virtual time t if executed sequentially, i.e. 
the size of its state at virtual time t plus the 
sizes of all of the event notices for pi that 
would be on the event list at virtual time t 
if it were executed sequentially. Then if 

Vt<t’ ( II i pi(t) <= M ) 5.1 

TW can execute a simulation to the point 
where GVT>= t’ . 

Proof: Suppose the protocol fails in Line 6, 
at virtual time t’. From the conditions on 
Lines 4-5 we can conclude that the follow- 
ing holds when control reaches Line 6 on 
some processor: 

vv (v.svt < GVT <= vt(v) ) 5.2 

where v varies over all messages and states 
stored in any queue of any process. Again, 
we can separate this into the three cases 
encoded by the macro vt (v). If we consider 
three new variables, v, ranging over states, 
Vi ranging over input messages, and v, 
ranging over output messages, then condi- 
tion 5.2 is equivalent to the following: 
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Vv, ( v,.sti < GVT <= v,.rvt ) 5.3 

Vy ( Vi.Sti < GVT <= Vi.rvt ) 5.4 
‘ifv, (v,.svt cGVT <= v,.svt ) 5.5 

Condition 5.3 says that at the time of mem- 
ory exhaustion all states remaining in 
memory have svt < GVT and have GVT <= 
rvt, where svt is the virtual time it is “pro- 
duced” and rvt is the time it is “consumed”. 
Thus all states in memory “cover“ a 
virtual time interval containing GVT. In 
TW there is always exactly one state for 
each process that covers G VT, and each 
such state is correct because it was created 
at a virtual time (svt) strictly less than GVT. 
Hence we conclude: 

Cl: The states in memory at the moment 
of storage exhaustion are exactly those 
that would be in memory at virtual 
time GVT if the simulation were exe- 
cuted sequentially. 

Condition 5.4 says that when storage is ex- 
hausted, exactly those input messages re- 
main such that svt < GVT <= rvt . As with 
states, all of these messages are correct, i.e. 
the same as those that would be produced 
by sequential execution, since their send 
times are less than GVT. But unlike states, 
there may be any number of such input 
messages (including zero) for each process. 
The critical observation is that there is a 
one-to-one correspondence between the 
messages satisfying Condition 5.4, and the 
event notices that would be on the event 
list at virtual time GVT if the simulation 
were executed sequentially, because the 
contents of the event list at any virtual 
time t in sequential execution is exactly the 
set of event notices that were scheduled at 
times strictly earlier than t for execution at 
times greater than or equal to t. Thus, if we 
neglect any difference in storage required 
by an event notice in a sequential execu- 

tion and the corresponding message in a 
parallel execution, we conclude: 

C2: The input messages in memory at the 
moment of storage exhaustion are ex- 
actly the same as would in memory at 
virtual time GILT in a sequential execu- 
tion. 

Finally, Condition 5.5 says that at the 
moment of storage exhaustion all output 
messages in memory satisfy both svt < GVT 
and svt >= GVT. These conditions are con- 
tradictory, and thus there can be no such 
messages. Of course, in sequential execu- 
tion there is no notion corresponding to an 
output message. Hence, we conclude: 

C3: The output messages in memory at 
the moment of sforage exhaustion are 
exactly the same as would in memory at 
virtual time G VT in a sequential execu- 
tion, namely none. 

Combining the results Sl-S3 we conclude: 

C4: The input messages, output messages, 
and states in memory at the moment of 
storage exhaustion are the same as 
would be in memory af time GVT if the 
simulation were executed sequentially. 

At the moment of storage exhaustion in 
Line 6 the protocol’s extra internal buffer is 
full holding item u, and counting it the 
protocol uses exactly the space the sequen- 
tial algorithm would. But the internal 
buffer is part of the constant storage be- 
longing to the operating system, and does 
not count. Therefore, at the moment of 
storage exhaustion the dynamic storage 
used is exactly one page less than needed 
for sequential execution. If Line 6 is not 
executed while GVT c t’, then from S4 we 
know that execution will proceed to 
GVT = t’. End proof. 
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Cor.: If mQ,S <= M then simulation S can 
complete execution under TW in M pages 
of memory. 
Proof: Since Vt<= (C i 
simulation can execute 
Proof 

Pi(f) <= mQ,S), the 
to GVT >= 00. End 
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